Publications & Citations
-
Protecting P-glycoprotein at the Blood-Brain Barrier from Degradation in an Alzheimer’s Disease Mouse Model. Research Square; DOI: doi.org/10.21203/rs.3.rs-116503/v1. Ding, Y., Zhong, Y., Baldshwiler, A., Abner, E., Bauer, B., Hartz, A. (2020)
-
Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer’s disease. Acta Neuropathologica Communications; doi.org/10.1186/s40478-020-01013-5. Lackie,R., Marques-Lopes,J., Ostapchenko,V., Good,S., Choy,W., Oosten-Hawle, P., Pasternak,S., Prado,V., Prado,M. (2020)
-
A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer’s disease.
Scientific Reports; doi.org/10.1038/s41598-020-69626-3.
Ikenoue, T., Aprile, F.A., Sormanni, P., et al. (2020) -
Impact of Ecklonia radiata extracts on the neuroprotective activities against amyloid beta (Aβ1-42) toxicity and aggregation. Journal of Functional Food; doi.org/10.1016/j.jff.2020.103893. Alghazwi, M., Charoensiddhi, S., Smide, S., Zhang, W. (2020)
-
Dityrosine cross-link trapping of amyloid-β intermediates reveals that self-assembly is required for Aβ-induced cytotoxicity. bioRxiv; www.biorxiv.org/content/10.1101/2020.03.25.007690v1.full. Maina, M., Mengham, K., Burra, G., Al-Hilaly,Y., Serpell, L. (2020)
-
Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways .. Neurobiology of Disease; doi.org/10.1016/j.nbd.2019.104617. Wei, Z., Meng, X., Fatimy, R., Sun, B., Mai, D., Zhang, J., Arora, R., Zeng, A., Xu, P., Qu, S., Krichevsky, A., Selkoe, D., Li, S., (2020)
-
The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membrane-mediated mechanism. BBA; doi.org/10.1016/j.bbamem.2020.183337. Kravenska,Y., Nieznanska,H., Nieznanski,K., Lukyanetz,E., Szewczyk,A., Koprowski,P., (2020)
-
Development of a novel sheathless CE-ESI-MS interface via a CO2 laser ablated opening. Talanta; doi.org/10.1016/j.talanta.2020.120853. Vermeire, P., Schepdael, A., Petersen, N. (2020)
-
Analyzing microglial-associated Aβ in Alzheimer’s disease transgenic mice with a novel mid-domain Aβ-antibody. Scientific Reports; doi.org/10.1073/pnas.1700239114. Henjum,K., Arskog,V., Jendresen,C.,Fladby,T., Torp,R., Nilsson,L. (2020)
-
Comparison of ELISA- and SIMOA-based quantification of plasma Aβ ratios for early detection of cerebral amyloidosis. Alzheimer's Research & Therapy; doi.org/10.1186/s13195-020-00728-w. Meyer, S., Schaeverbeke,J., Verbek, I., Gille, B., Schaepdryver, M., Luckett, E., Gabel, S., Bruffaerts, R., Mauroo, K., Thijssen, E., Stoops, E., Vanderstichele, H., Teunissen, C., Vandenberghe, R., Poesen, K. (2020)
-
Resveratrol-mediated cleavage of amyloid β1-42 peptide; potential relevance to Alzheimer’s disease. Neurobiology of Aging; doi.org/10.1016/j.neurobiolaging.2020.04.012. Al-Edresi, A., Alsalahat, I., Freeman, S., Aojula, H., Penny,J. (2020)
-
Plasma metabolomics of presymptomatic PSEN1-H163Y mutation carriers: A pilot study. bioRxiv; doi: doi.org/10.1101/2020.05.16.093559.. Natarajan, K., Ullgren, A., Khoshnood, B., Johansson, C., Laffita-Mesa, J., Pannee, J., Zetterberg, H., Blennow, K., Graff, C. (2020)
-
Small molecule modulation of the p75 neurotrophin receptor inhibits multiple amyloid beta-induced tau pathologies. Scientific Reports; doi.org/10.1038/s41598-020-77210-y. Yang, T., Tran, K., Zeng, A., Massa, S., Longo, F. (2020)
-
α-Synuclein promotes IAPP fibril formation in vitro and β-cell amyloid formation in vivo in mice. Scientific Reports; https://doi.org/10.1038/s41598-020-77409-z. Mucibabic,M., Steneberg,P., Lidh, E., Straseviciene,J., Ziolkowska,A., Dahl,U., Lindahl,E., Edlund,H. (2020)
-
Criticality as a measure of developing proteinopathy in engineered human neural networks. bioRxiv; doi: https://doi.org/10.1101/2020.05.03.074666. Valderhaug, V., Heiney, K., Ramstad, O., Bråthen, G., Kuan, W., Nichele, S., Sandvig, A., Sandvig, J (2020)
-
Fruits and leaves from wild blueberry plants contain diverse polyphenols and decrease neuroinflammatory responses in microglia. Journal of Functional Foods; https://doi.org/10.1016/j.jff.2020.103906. Debnath-Canning, M., Unruh, S., Vyas, P., Daneshtalab, N., Igamberdiev, A., Weber, J. (2020)
-
Gut Microbiome-Modified Polyphenolic Compounds Inhibit α-Synuclein Seeding and Spreading in α-Synucleinopathies. Frontiers in Neuroscience; https://doi.org/10.3389/fnins.2020.00398. Yamasaki,T., Ono, K., Ho,L., Pasinetti, G., (2020)
-
α-Synuclein-112 impairs synaptic vesicle recycling consistent with its enhanced membrane binding properties.. Cells and Development Biology; https://doi.org/10.3389/fcell.2020.00405. Soll, L., Eisen, J., Vargas, K., Medeiros, A., Hammar, K., Morgan, J. (2020)
-
Antioxidant Nanoparticles for Concerted Inhibition of α-Synuclein Fibrillization, and Attenuation of Microglial Intracellular Aggregation and Activation. Frontiers Bioengineering and Biotechnology; https://doi.org/10.3389/fbioe.2020.00112. Zhao, N., Yang, X., Calvelli, H., Cao, Y., Francis, N., Chmielowski, R., Joseph, L., Pang, Z., Uhrich, K., Baum,J., Moghe, P. (2020)
-
RT-QuIC-based detection of alpha-synuclein seeding activity in brains of dementia with Lewy Body patients and of a transgenic mouse model of synucleinopathy. Prion; doi: 10.1080/19336896.2020.1724608. Han, J., Jang, H., Green, A., Choi, Y. (2020)