Beta Amyloid Citations: 2020
Meyer, S., Schaeverbeke,J., Verbek, I., Gille, B., Schaepdryver, M., Luckett, E., Gabel, S., Bruffaerts, R., Mauroo, K., Thijssen, E., Stoops, E., Vanderstichele, H., Teunissen, C., Vandenberghe, R., Poesen, K. (2020) Comparison of ELISA- and SIMOA-based quantification of plasma Aβ ratios for early detection of cerebral amyloidosis. Alzheimer's Research & Therapy; https://doi.org/10.1186/s13195-020-00728-w.
Ding, Y., Zhong, Y., Baldshwiler, A., Abner, E., Bauer, B., Hartz, A. (2020) Protecting P-glycoprotein at the Blood-Brain Barrier from Degradation in an Alzheimer’s Disease Mouse Model. Research Square; DOI: https://doi.org/10.21203/rs.3.rs-116503/v1.
Hemion, C., Li,J.,Kohler,C., Scholl, H.P.N., Meyer, P., Killer, H., Neutzner,A. (2020) Clearance of neurotoxic peptides and proteins by meningothelial cells. Experimental Cell Research; https://doi.org/10.1016/j.yexcr.2020.112322.
Yang, T., Tran, K., Zeng, A., Massa, S., Longo, F. (2020) Small molecule modulation of the p75 neurotrophin receptor inhibits multiple amyloid beta-induced tau pathologies. Scientific Reports; https://doi.org/10.1038/s41598-020-77210-y.
Wnuk, A., et al (2020) Selective Targeting of Non-nuclear Estrogen Receptors with PaPE-1 as a New Treatment Strategy for Alzheimer’s Disease. Springer Open Choice; https://dx.doi.org/10.1007%2Fs12640-020-00289-8.
Ikenoue, T., Aprile, F.A., Sormanni, P. et al. (2020) A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer’s disease. Sci Rep.; https://doi.org/10.1038/s41598-020-69626-3.
Kravenska,Y., Nieznanska,H., Nieznanski,K., Lukyanetz,E., Szewczyk,A., Koprowski,P., (2020) The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membrane-mediated mechanism. BBA; https://doi.org/10.1016/j.bbamem.2020.183337.
Lv, J., Chen, L., et al (2020) Beta amyloid-induced time-dependent learning and memory
impairment: involvement of HPA axis dysfunction. Metabolic Brain Disease; https://doi.org/10.1007/s11011-020-00613-3.
Boulo,S., Kuhlmann,J., Andreasson,U., Venkataraman,I., Herbst,V., Rutz,S., Manuilova,E., Vandijck,M., Dekeyser,F., Bjerke,M., Pannee,J., Charoud-Got,J., Auclair,G., Mazoua,S., Pinski,G., Trapmann,S., Schimmel,H., Emons, H., Quaglia,M., Portelius,E., Korecka, M., Shaw,L., Lame,M., Chambers, E., Vanderstichele,H., Stoops, E., Leinenbach, A., Bittner,T., Jenkins,R., Kostanjevecki,V., Lewczuk,P., Gobom,J., Zetterberg,H., Zegers,I., Blennow,K. (2020) First amyloid β1‐42 certified reference material for re‐calibrating commercial immunoassays. Alzheimer's Association; https://doi.org/10.1002/alz.12145.
Lackie,R., Marques-Lopes,J., Ostapchenko,V., Good,S., Choy,W., Oosten-Hawle, P., Pasternak,S., Prado,V., Prado,M. (2020) Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer’s disease. Acta Neuropathologica Communications; https://doi.org/10.1186/s40478-020-01013-5.
Qiu, Y., et al (2020) Predicting Thioflavin Fluorescence of Retinal Amyloid Deposits Associated With Alzheimer's Disease from Their Polarimetric Properties. Translational Vision Science & Technology; https://doi.org/10.1167/tvst.9.2.47.
Neddens,J., Daurer,M., Flunkert,S., Beutl,K., Loeffler,T., Walker,L., Attems,J., Hutter-Paier,B., (2020) Correlation of pyroglutamate amyloid β and ptau Ser202/Thr205 levels in Alzheimer’s disease and related murine models. PLOS ONE; https://doi.org/10.1371/journal.pone.0235543.
Vermeire, P., Schepdael, A., Petersen, N. (2020) Development of a novel sheathless CE-ESI-MS interface via a CO2 laser ablated opening. Talanta; https://doi.org/10.1016/j.talanta.2020.120853.
Shrestha, S., et al (2020) Ecklonia radiata extract containing eckol protects neuronal cells against Aβ 1-42 evoked toxicity and reduces aggregate density. Food & Function.; 10.1039/d0fo01438a.
Fujita,Y., Maeda,T., Sato,C., Sato,M., Hatakeyama,H., Ota,Y., Iwabuchi,N., Tatesawa,K., Nomura,A., Zou,K., Komano,H. (2020) Engulfment of Toxic Amyloid β-protein in Neurons and Astrocytes Mediated by MEGF10. Neuroscience; https://doi.org/10.1016/j.neuroscience.2020.07.016.
Sohrabi, M., et al (2020) IGF-1R Inhibitor Ameliorates Neuroinflammation in an Alzheimer’s Disease Transgenic Mouse Model. Frontiers; https://doi.org/10.3389/fncel.2020.00200.
Mrdenovic, D., et al (2020) Alzheimer's disease-related amyloid β peptide causes structural disordering of lipids and changes the electric properties of a floating bilayer lipid membrane. Nanoscale Advances; https://doi.org/10.1039/D0NA00292E.
Henjum,K., Arskog,V., Jendresen,C.,Fladby,T., Torp,R., Nilsson,L. (2020) Analyzing microglial-associated Aβ in Alzheimer’s disease transgenic mice with a novel mid-domain Aβ-antibody. Scientific Reports; https://doi.org/10.1073/pnas.1700239114.
X. Tan, H. Guan, Y. Yang, et al. (2020) Cu(II) disrupts autophagy-mediated lysosomal degradation of
oligomeric Aβ in microglia via mTOR-TFEB pathway. Toxicology and Applied Pharmacology; https://doi.org/10.1016/j.taap.2020.115090.
Michiels, E., Roose, K., Gallardo, R. et al. (2020) Reverse engineering synthetic antiviral amyloids. Nature Communications; https://doi.org/10.1038/s41467-020-16721-8.
Caneus,J., Akanda, N., Rumsey,J.,Guo, X., Jackson, M., Long, C., Sommerhage, F., Georgieva, S., Kanaan, N., Morgan, D., Hickman, J. (2020) A human induced pluripotent stem cell‐derived cortical neuron human‐on‐a chip system to study Aβ42 and tau‐induced pathophysiological effects on long‐term potentiation. Alzheimer's & Dementia; doi: 10.1002/trc2.12029.
Natarajan, K., Ullgren, A., Khoshnood, B., Johansson, C., Laffita-Mesa, J., Pannee, J., Zetterberg, H., Blennow, K., Graff, C. (2020) Plasma metabolomics of presymptomatic PSEN1-H163Y mutation carriers: A pilot
study. bioRxiv; doi: https://doi.org/10.1101/2020.05.16.093559..
Korecka, M., et al (2020) Analytical and Clinical Performance of Amyloid-Beta Peptides Measurements in CSF of ADNIGO/2 Participants by an LC-MS/MS Reference Method. Clinical Chemistry; https://doi.org/10.1093/clinchem/hvaa012.
Friedemann, M., , V., Palumaa, P (2020) Copper(II) partially protects three histidine residues and the N‐terminus of amyloid‐β peptide from diethyl pyrocarbonate (DEPC) modification (2020).. FEBSPRESS; https://doi.org/10.1002/2211-5463.12857.
Wallin, C., Jarvet, J., Biverstal, H., Warmlander, S., Danielsson, J., Graslund, A., Abelein, A. (2020) Metal ion coordination delays amyloid-β peptide self-assembly by forming an aggregation-inert complex. Journal of Biological Chemistry; doi: 10.1074/jbc.RA120.012738.
Al-Edresi, A., Alsalahat, I., Freeman, S., Aojula, H., Penny,J. (2020) Resveratrol-mediated cleavage of amyloid β1-42 peptide; potential relevance to Alzheimer’s disease. Neurobiology of Aging; https://doi.org/10.1016/j.neurobiolaging.2020.04.012.
Maina, M., Mengham, K., Burra, G., Al-Hilaly,Y., Serpell, L. (2020) Dityrosine cross-link trapping of amyloid-β intermediates reveals that self-assembly is required for Aβ-induced cytotoxicity. bioRxiv; https://www.biorxiv.org/content/10.1101/2020.03.25.007690v1.full.
Alghazwi, M., Charoensiddhi, S., Smide, S., Zhang, W. (2020) Impact of Ecklonia radiata extracts on the neuroprotective activities against amyloid beta (Aβ1-42) toxicity and aggregation. Journal of Functional Food; https://doi.org/10.1016/j.jff.2020.103893.
Wilhelmus, M., Jongenelen, C., Bol, J., Druckarch, B (2020) Interaction between tissue transglutaminase and amyloid-beta: Protein-protein binding versus enzymatic crosslinking. Analytical Biochemistry; https://doi.org/10.1016/j.ab.2020.113578.
Kravenska, Y.,Nieznanska, H., Nieznanski, K., Lukyanetz, E., Szewczyk, A., Koprowski, P. (2020) The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membrane-mediated mechanism. Biochimica et Biophysica Acta (BBA); Biomembranes; doi.org/10.1016/j.bbamem.2020.183337..
Wei, Z., Meng, X., Fatimy, R., Sun, B., Mai, D., Zhang, J., Arora, R., Zeng, A., Xu, P., Qu, S., Krichevsky, A., Selkoe, D., Li, S., (2020) Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways (2020).. Neurobiology of Disease; https://doi.org/10.1016/j.nbd.2019.104617.
Dekens, D., Deyn, P., Sap, F., Eisel, U., Naude, P., (2020) Iron chelators inhibit amyloid-β-induced production of lipocalin 2 in cultured astrocytes (2020).. Neurochemistry International; https://doi.org/10.1016/j.neuint.2019.104607.