Product Name
Tau 441 Preformed Fibrils
Size
Catalog #
TF-1001-1
Storage
–80⁰C
(Ships on Dry Ice)
Sequence
MAEPRQEFEV MEDHAGTYGL GDRKDQGGYT MHQDQEGDTD AGLKESPLQT PTEDGSEEPG SETSDAKSTP TAEDVTAPLV DEGAPGKQAA AQPHTEIPEG TTAEEAGIGD TPSLEDEAAG HVTQARMVSK SKDGTGSDDK KAKGADGKTK IATPRGAAPP GQKGQANATR IPAKTPPAPK TPPSSGEPPK SGDRSGYSSP GSPGTPGSRS RTPSLPTPPT REPKKVAVVR TPPKSPSSAK SRLQTAPVPM PDLKNVKSKI GSTENLKHQP GGGKVQIINK KLDLSNVQSK CGSKDNIKHV PGGGSVQIVY KPVDLSKVTS KCGSLGNIHH KPGGGQVEVK SEKLDFKDRV QSKIGSLDNI THVPGGGNKK IETHKLTFRE NAKAKTDHGA EIVYKSPVVS GDTSPRHLSN VSSTGSIDMV DSPQLATLAD EVSASLAKQG L
Source
Recombinant. A DNA sequence encoding the human Tau 441 sequence was expressed in E. coli and was then made into preformed fibrils.
Description
These preformed fibrils of Tau 441 may be used as a model for the pathogenic form of Tau in numerous tauopathies. Sourced from E. coli, Tau 441 fibrils were prepared and confirmed by thioflavin assay and electron microscopy, which shows an average size ranging from 50nm-200nm. Applications of this product range from in vitro studies on fibril formation and stability 1 to in vivo studies on cellular uptake, cell viability and pathway activation 2. This product is also suitable for use in mouse models for studies involving memory, neuronal health, or seeding and prion like spreading 3. Recent assessment of the Amyloid hypothesis has led to the realization that wildtype tau is accumulated in various tauopathies including Alzheimer’s disease, Pick’s disease, and progressive supranuclear palsy among others. Applied to either in vivo or in vitro experiments, these fibrils may be utilized to investigate the mechanism of various tauopathies.
Purity
>90%
Cost (US$)
$225
Place an Order
Would you like 10 or more? Save on cost by requesting a Large Quantity Quote.
1.Paul A, Viswanathan et al. FEBS J. 2021 Feb 1. doi: 10.1111/febs.15741. Epub ahead of print. PMID: 33523571.
2.Wang P, Ye Y. Nat Commun. 2021 Jan 4;12(1):95. doi: 10.1038/s41467-020-20322-w. PMID: 33398028; PMCID: PMC7782792.
3.Veys L, et al. Front Aging Neurosci. 2021 Jan 15;12:614587. doi: 10.3389/fnagi.2020.614587. PMID: 33519421; PMCID: PMC7843377.
4.Kametani F, Hasegawa M. Front Neurosci. 2018;12:25. Published 2018 Jan 30. doi:10.3389/fnins.2018.00025
5.Guo JL, Lee VM. 2013 Aug 2;587(15):2484]. FEBS Lett. 2013;587(6):717-723. doi:10.1016/j.febslet.2013.01.051
6.Clavaguera F, Bolmont T, Crowther RA, et al. Nat Cell Biol. 2009;11(7):909-913. doi:10.1038/ncb1901)
2.Wang P, Ye Y. Nat Commun. 2021 Jan 4;12(1):95. doi: 10.1038/s41467-020-20322-w. PMID: 33398028; PMCID: PMC7782792.
3.Veys L, et al. Front Aging Neurosci. 2021 Jan 15;12:614587. doi: 10.3389/fnagi.2020.614587. PMID: 33519421; PMCID: PMC7843377.
4.Kametani F, Hasegawa M. Front Neurosci. 2018;12:25. Published 2018 Jan 30. doi:10.3389/fnins.2018.00025
5.Guo JL, Lee VM. 2013 Aug 2;587(15):2484]. FEBS Lett. 2013;587(6):717-723. doi:10.1016/j.febslet.2013.01.051
6.Clavaguera F, Bolmont T, Crowther RA, et al. Nat Cell Biol. 2009;11(7):909-913. doi:10.1038/ncb1901)